If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2-18=12a
We move all terms to the left:
4a^2-18-(12a)=0
a = 4; b = -12; c = -18;
Δ = b2-4ac
Δ = -122-4·4·(-18)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12\sqrt{3}}{2*4}=\frac{12-12\sqrt{3}}{8} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12\sqrt{3}}{2*4}=\frac{12+12\sqrt{3}}{8} $
| 7x-2=-4+11 | | -2x=-2+7 | | 20^n=90 | | x/81=100/x | | 500=100(x+1 | | 2(8s+8)-7s=3(3s+3)-10 | | 2(4)^(2x+1)=128 | | 71/2=2/3*q | | -1.5x+15=8 | | 3(x+2)-2x=26 | | -1.5x+15=6 | | 7/3x-4=-8 | | n=6n+25 | | Y=14x2 | | 21x+3=4 | | 9(j−89)=18 | | 10(7x-12)=1 | | 96=4(y+15) | | 2(g+11)=74 | | 3(w+6)+4w=-31 | | -2=8(y-4)+2y | | x^2x2x=216 | | 81-w=286 | | 3.5x+1,5=0 | | 158=-x+209 | | u+2.52=6.73 | | 9x-4=5x-15 | | x-2.98=5.2 | | x-5+(x+4)-5=20 | | p+79=3 | | 7(x+2)=7x-14 | | x+2x+9x+5=180 |